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We investigated if learning relational reasoning in mathematics generalizes to other domains and general intel-
ligence, including speed, attention control, and working memory. A total of 118 10-year olds were involved, al-
located to an experimental and a control group. The experimental group was involved in 12 learning sessions
addressed to various aspects of relational reasoning. Various analyses, including Rasch scaling, growthmodeling
and structured means analysis, showed significant but not sustainable learning gains in the ability trained. How-
ever, learning transferred to similar processes in analogical reasoning and also to attention control and working
memory, indicating sustainable effects onmechanisms underlying general intelligence. An upper developmental
constraint to learning was found. Implications for psychometric and developmental theories of intelligence and
for education are discussed.
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Learning is of central concern to many disciplines. In the psychology
of intelligence, researchers focus on a double face problem. On the one
hand, they try to specify how learning is constrained by general intellec-
tual ability (i.e., g or its measuredmanifestation, IQ). On the other hand,
they examine how learning may change general intellectual ability it-
self, if at all (Hunt, 2011; Jensen, 1998). In developmental psychology,
this problem is restated in terms of developmental constraints. That is,
it is examined, on the one hand, if learning possibilities vary as a func-
tion of developmental level (or stage) of cognitive processes
(Brainerd, 1977; Piaget, 1964). On the other hand, it is also examined
if learningmay accelerate transition across developmental levels and el-
evate individuals higher on a developmental hierarchy than it would be
possible by spontaneous development (Brainerd, 1977; Efklides,
Demetriou, & Gustafsson, 1991; Klauer, 1998, 2014; Klauer & Phye,
1994). In educational science concerns are more practical, focusing on
the stability of learning gains and their transfer to other domains
(Csapó, 1999; Greiff et al., 2014; Klauer & Phye, 2008). This study is re-
lated to all of these concerns:We examine if learning to use general cog-
nitive processes (e.g., classification and induction of relations) in a
specific domain (i.e., mathematics) (i) augments general intelligence
(defined as a latent construct underlying several domains in addition
to mathematics), (ii) transfers to domain-free representational and
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processing capacities, such as processing speed, attention control, and
workingmemory, (iii) varies over time, and (iv) is constrainedbydevel-
opmental level.

There is general agreement that g (or IQ, as a global measurement of
g) is systematically related to learning. On the one hand, high g implies
faster, deeper, and more stable learning than low g (Jensen, 1998). On
the other hand, learning (school-based or experimentally induced) in-
fluences intelligence positively. There is evidence that each extra year
of schooling augments IQ by 2–4 IQ units (Ceci, 1991; Gustafsson,
2008; Gustafsson & Undheim, 1996). However, it is disputed if this ef-
fect reflects a better handling of the test itself or a real increase in intel-
ligence. Jensen (1998) suggested that these effects are shallow,
primarily reflecting improvement in test taking skills rather that a
change in g itself. There is empirical support for this view. For instance,
te Nijenhuis, van Viane, and van der Flier (2007) claimed that test–re-
test gains and gains related to systematic learning experiences ad-
dressed to the abilities related to various intelligence tests are not
related to g. It is also claimed that gains in IQ from long-term programs,
such as the Head Start program, did not relate to g because they do not
affect the underlying processing and inferential mechanisms of g (te
Nijenhuis, Jongeneel-Grimen, & Kirkegaard, 2014).

The assumption that g is impervious to learning was invoked to ex-
plain the finding that increases in IQ because of learning fade out with
time. However, this interpretation ignores the possible developmental
variation of g. That is, developmental theory assumes that development
transforms the underlying g construct in both its representational and
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inferential efficiency. Therefore, when intervention is delivered only at a
given time T butmeasurements are taken at both time T and a relatively
remote time T+ 1, what appears to be a fade out effect because perfor-
mance at T + 1 is lower than performance at T simply reflects the fact
that g at T + 1 is not identical to g that was affected by the learning ex-
perience. This possibility renders conclusions regarding the depth of
learning effects (test taking expertise or underlying g-loaded mental
processes) unfounded. A critical test of this assumption would be to ex-
amine if g-related learning generalizes to underlying processing and
representational mechanisms, such as attention control and working
memory.

Developmental research is only partially in agreement with psycho-
metric research. On the one hand, somehow echoing Jensen's position
about g-bound constraints of learning, Piaget (1964) (see also
Inhelder, Sinclair, & Bovet, 1974) himself postulated that learning is
constrained by the currentmental structure. That is, inferential patterns
and concepts exceeding the assimilatory possibilities of the current
structure cannot be learned, because this structure would reject or dis-
tort patterns and concepts that cannot be meaningfully understood. On
the other hand, Piaget did accept that learning directed to the integra-
tion and consolidation of the mental operations underlying the current
mental structure may both accelerate the development of this structure
and generalize to concepts drawing upon it. In psychometric terms, this
would be equivalent to change in mental age as a result of learning.

Research in this tradition investigated the effects of learning on all
sorts of Piagetian structures and concepts (Brainerd, 1977; Efklides
et al., 1991; Inhelder et al., 1974; Shayer & Adey, 2002; Strauss, 1972).
In line with Piaget, this research found that learning focusing on the in-
tegration of mental operations was more successful, stable, and trans-
ferrable than learning focusing on the acquisition of specific skills and
processes. Also, it was found that progress within a stage is much easier
to attain than progress across stages. Along these lines, Klauer and his
colleagues (Klauer and Phye, 1994; Klauer, Willmes, and Phye, 2002)
developed a program that trained children to reason inductively, draw-
ing from both the developmental and the psychometric approach. This
program adopted the Piagetian assumption that processing of similari-
ties and differences between objects or representations, inducing their
underlying relations, and integrating them into classificatory or rela-
tional schemes is crucial for operational development (Inhelder et al.,
1974). Notably, this assumption coincides with the psychometric as-
sumption that induction of relations between objects or representations
and of relations between relations is the substance of g (Carroll, 1993;
Spearman, 1904) or fluid intelligence (Cattell, 1963). Klauer and col-
leagues maintained that their program permanently increased fluid in-
telligence and improved academic performance (Klauer, 1998, 2014;
Klauer & Phye, 2008; Klauer et al., 2002).

A stricter test of the effects of learningwould be to specify if an inter-
vention transfers to fundamental representational and processing ca-
pacities underlying the ability trained, such as attention control or
working memory. This is because individual differences in fluid intelli-
gence are assumed to reflect differences in these fundamental pro-
cesses. Specifically, fast processing, (Jensen, 1998), attention control
(Diamond, 2013), and working memory (Kyllonen and Christal, 1990)
are associated with higher intelligence. In developmental research,
changes in each of these processes were associated with changes in
thought and problem solving (Case, 1985; Demetriou, Christou,
Spanoudis, and Platsidou, 2002; Kail, 1991, 2007; Pascual-Leone,
1970; Pascual-Leone and Johnson, 2011). It was suggested that these
processes relate in a cascade fashion such that increasing speed facili-
tates attention control, which facilitates working memory, which facili-
tates transition to higher levels of reasoning and problem solving (Fry
and Hale, 1996, 2000; Kail, 2007).

There is research examining ifmodifying these processes transfers to
g. Findings so far are inconclusive. Several studies showed that training
executive processes in working memory, such as information binding
and attention control, did transfer to fluid intelligence (Jaeggi,
Buschkuehl, Jonides, and Perrig, 2008) and every day and school perfor-
mance (Barnett, 2011; Diamond, 2013). However, extensive evaluation
of this literature suggested that training executive processes confounds
changes in the command of these processes per se with changes in in-
ferential processes shared by working memory and Gf (Melby-Lervag
& Hulme, 2013; Shipstead, Redic, & Engle, 2012). That is, what is sup-
posed to be transfer of learning effects from WM to Gf it is actually
learning directly affecting Gf. Along the same line Nutley et al. (2011)
showed that training nonverbal Gf related reasoning processes did
raiseGf in 4 years old children; however, trainingworkingmemory pro-
cesses, although effective to improve working memory performance,
did not transfer to Gf. On the contrary, Rueda, Checa, and Combita
(2012) found that training attention control did transfer to Gf in
5 years old children.

Incongruence between studies may be apparent rather than real.
That is, it might be the case that the possible impact of learning varies
with age, because the role of different processes varies with develop-
ment. In this case, differences between studiesmay simply reflect differ-
ences in the processes addressed vis-à-vis participants' age. Demetriou
and colleagues (Demetriou et al., 2013; Demetriou, Spanoudis, &
Shayer, 2014; Demetriou et al., 2014) advanced a model of intellectual
development postulating that these relations vary systematically with
developmental phase. According to this model, fluid intelligence de-
velops through fourmajor reconceptualization cycles (the ReConceP se-
quence), with two phases in each. In succession, the four cycles operate
with episodic representations (birth to 2 years), realistic mental repre-
sentations (2–6 years), rule-based reasoning integrating mental repre-
sentations (6–11 years), and principle-based reasoning integrating
rules (11–18 years). Transitions within cycles occur at 4 years, 8 years,
and 14 years, when relations between the representational units of
the present cycle are metarepresented into the representational units
of the next cycle (Christoforides, Spanoudis, & Demetriou, in press).
These cycles were specified on the basis of performance on a large vari-
ety of tasks addressed to reasoning and problem solving in various do-
mains. Many of these tasks were used here to test the reasoning in
various domains (see Method). These include pragmatic and condi-
tional reasoning, categorical and analogical reasoning expressed
through verbal, numerical, and figural content, scientific reasoning ad-
dressed to various aspects of hypothesis formation and testing, and var-
ious aspects of spatial reasoning, such as mental rotation and
orientation in space (Demetriou & Kyriakides, 2006).

Demetriou et al. (2013, 2014) showed that changes in Gf in the first
phase of each cycle (i.e., at 6–8 years and 11–13 years) are related to
changes in processing efficiency. Measures of processing speed, such
as choice reaction times and Stroop-like tasks of attention control
were used to measure processing efficiency. Changes in the second
phase of each cycle (i.e., 4–6 years, 8–10 years, and 13–16 years) are re-
lated to changes inworkingmemory. Tasks addressed to various aspects
of short-term memory and executive processes in working memory
were used (Demetriou et al., 2002; Demetriou, Mouyi, & Spanoudis,
2008; Demetriou et al., 2013; Demetriou et al., 2014). They suggested
that this pattern reflects differences in the processing requirements of
developmental acquisitions. At the beginning of cycles processing
speed is a better index because it reflects changes in the facility of
using the new mental units. Later in the cycle, when networks of rela-
tions between representations are established, working memory is a
better index because alignment and inter-linking of representations
both requires and facilitates working memory.

In short, this model posits that intelligence is a universe of processes
which give meaning to the world, handling change sensibly and adap-
tively. The main meaning-making processes are abstracting, aligning
and relating, and filling in gaps of information and evaluating them by
inference and reasoning. It is a developmental process that accom-
plishes these aims under the representational and processing con-
straints of the current phase, finding ways to minimize the constraints
and enhance possibilities. In so doing it causes development in
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representational and processing possibilities. Individual differences at
any phase may come from differences in representational and process-
ing possibilities related to underlying brain structures but also from lack
of knowledge related to encounters and lack of evaluation sensitivities
that would grasp what is needed and flexibly adjust available represen-
tations and processes.

This model allows more specific predictions about learning effects
because these may be tuned to the network of relations associated
with the developmental phase concerned. For instance, in the early
phase of a cycle, there should be a stronger flow of effects between Gf
and speed or attention control rather than with working memory. In
the second phase the opposite pattern should be expected. In timewin-
dows spanning over two phases, these patterns may be inverted from
one measurement to the next. For instance, in the transition from the
rule-based to the principle-based cycle, working memory dominates
at the beginning because Gf-WM relations are stronger in the second
phase of the rule-based cycle and speed-control dominates at the end
because in the first phase of the principle-based concepts Gf-speed rela-
tions are stronger. Also, progression along ReConceP may vary across
different domains, because abstraction and inferential processes under-
lying ReConceP are more likely within rather than across domains
(Demetriou et al., 2014). Thus, transfer of learning across domains
may vary as a function of the proximity of domains to the processes af-
fected by learning: The closer the better, because naturalization into the
informational and procedural specificities of the other domain is easier.
For instance, training relational and analogical reasoning in mathemat-
ics would be easier to transfer to relational and analogical reasoning in
other domains rather than to causal reasoning. This later domain
would require experimentation and isolation of variables skills, in addi-
tion to relational reasoning that would connect outcomes with possible
causes.

However, processing and representational efficiency as captured by
speed of processing, attention control, and working memory tasks are
good indexes of transfer possibilities.When speed and attention control
signify that an individual operates in the early phase of a cycle, transfer
from a domain trained to another domain would be difficult because
mental units are not yet fluent. When working memory signifies that
an individual operates in the second phase of a cycle, transfer would
be easier because the individual is already aligning mental units across
domains.

This study involved 10 to 11-year old primary school children. This is
a transition age between the cycle of rule-based reasoning to the cycle
of principle-based reasoning. Therefore, this age allows studying the al-
ternation of relations between processes that come as a result of change
in developmental cycle. Moreover, it allows examining if training ad-
dressed to processes related to the last phase of one cycle
(e.g., relational thought) may transfer to processes related to next
cycle (e.g., hypothesis testing by experimentation). Specifically, these
childrenwere systematically trained to use relational thought in the do-
main of mathematics. In addition to mathematics, these children were
examinedby tasks addressed to analogical, deductive, spatial, and scien-
tific reasoning and also to speed, attention control, and working mem-
ory. Based on their performance at pretest, a control and an
experimental group were formed, matched on all of these processes
on the group level. The experimental groupwas involved in the learning
experiment to bedescribed belowand then both groupswere examined
immediately after the experiment and several months later.

The models discussed above lead to different predictions about the
possible effects of learning. First, the Jensen-based psychometric
model assumes no transfer to g. Therefore, in line with this assumption,
change would be limited in the domain trained (mathematics) and it
should fade out with time. In concern to the possible relations between
Gf and measures of processing and representational efficiency (PREM),
such as speed, attention control, and working memory, learning gains
may depend on working memory or any other of the PREM, to reflect
the dependence of inferential processes on more fundamental
processes. However, transfer of learning effects Gf-related processes to
PREM processes would not be expected because inferential processes
do not condition the operation of PREM processes.

Second, the classic developmental model predicts transfer of effects
to the processes related to those trained. That is, process-directed learn-
ing may generalize to domains primarily reflecting process use, such as
analogical and deductive reasoning. This model is silent about the Gf-
PREM relations. Its neo-Piagetian version, however, would make a pre-
diction equivalent to the psychometric prediction. That is, any effect of
learning or any transfer of it would depend on PREM measures but it
would not affect them.

Third, the ReConcePmodel alignswithdevelopmental theory in con-
cern to transfer to other domains. In fact, it specifies that this generaliza-
tion would be discernible at the level of a latent construct defined over
the various domains. In concern to the domains, it predicts that it would
be proportional to their proximity to the domain trained, being maxi-
mum in analogical and deductive reasoning, and minimal in spatial
and scientific reasoning. In addition, it predicts that learning would
also transfer to working memory and speed and attention control. In
this later case, the relations between learning-based change and these
efficiency indexes would be phase-sensitive. That is, it would depend
on working memory but it would generalize to all three of them. This
is so because the present age phase was transitional between the con-
ceptual and the principles-based cycle, when working memory is the
index of change in the first phase and speed in the second phase. If
the learning experiment simulates spontaneous development, it
would generate the patterns expected according to normal age
progression.

1. Method

1.1. Participants

A total of 118 (54 males) children were involved. At first testing,
these children came from fifth grade primary school classes randomly
selected from five schools in Nicosia, Cyprus's capital. All children
were native speakers of Greek. Their mean age at first testing was
10.5 years. Within schools, one class was assigned to the experimental
group (three classes in total; 31 females, 29 males) and at least one
classwas assigned to the control group (four classes in total; 33 females,
25 males). Classes in Cypriot schools involve an average of 21 students.
Also, all classes in all schools are mixed ability classes. That is, children
are randomly assigned to classes so that all ability levels are represented
in the classes of each grade. The performance of the two groups on
mathematics (t = −.20, p N .84), the cognitive domains addressed by
the battery described below (t = −1.56, p N .12), working memory,
t = 1.16, p N .24), speed, (t = −.74, p N .94), and attention control
(t = −1.89, p N .10) did not differ significantly at first testing on any
of the abilities of interest. It is noted that two participants from the con-
trol group were dropped as outliers from all analyses presented below,
because their contribution to normalizedmultivariate kurtosis was very
large (Bentler, 2006). This was due to the fact that these children fluctu-
ated between ceiling at pretest and near floor at the first posttest on the
mathematics battery. The control group was a “no-contact” group,
which received no intervention other than regular instruction in school.
The learning experiment (see below) and the two testing waves after
learning took place when students were at sixth grade. The immediate
posttest took place within one month after the end of the intervention
(mean age at immediate posttest was 11.2 years). The delayed posttest
for each classroom started four months after the completion of the im-
mediate posttest (mean age at the delayed posttest was 11.6 years).

1.2. Task batteries

Three task batteries were used: The first addressed mathematical
reasoning; the second addressed several other domains of reasoning
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(i.e., analogical, deductive, spatial, and scientific reasoning) to abstract a
latent Gf factor and examine possible generalization of the effects of
learning; the third addressed processing and representational efficiency
(PRE) (i.e., speed, attention control, and working memory).

1.2.1. Mathematical reasoning
This battery included 22 tasks, focusing on processing similarities

and differences between numbers and ensuing relations. Ten of these
tasks were concerned with number grouping according to common at-
tributes and 12 tasks were concerned with number seriation according
to their relations. Specifically, some problems required participants to
identify common attributes between numbers (e.g., what is common
between 4, 16, 8, 32, 20, 100, and 40), form sets based on common attri-
butes (e.g., “select what is common between these numbers {12, 14, 7,
56, 28, 36, 84, 54, 49, 19} and spell it out explicitly”), extrapolate num-
ber sets by adding new objects sharing their defining property
(e.g., which one of the numbers {9, 12, 6, 7, 3, 8} belongs to the set
{24, 36, 18, 15, 63, 30}, identify numbers that do not belong to a set
(e.g., 9, 21, 11, 15, 12, 6, 35) because they do not share the set's defining
property, detect similarities and differences in two-dimensional series
(e.g. complete with the right number: (8, 4, 2 to 1, 1/2, 1/4 to 1/8, 1/
16, …). In some of the tasks, children were asked to explicitly specify
the relations running in two or more items.

These tasks are developmentally patterned. Specifically, tasks re-
quiring participants to specify an explicitly present relation (e.g., each
next number in a series is the double of the previous one) address
early rule-based reasoning. Tasks requiring to map relations of this
kind onto each other require late rule-based reasoning. Finally, tasks re-
quiring to specify relations between relations and explicitly spell them
out require principle-based reasoning.

Each item was scored on a fail (0) – pass (1) basis. The battery was
very reliable (Cronbach's alphawas .92, .93, and .93 for the three testing
waves, respectively).

1.2.2. Reasoning in other domains
The second battery was based on the test of cognitive development

presented by Demetriou and Kyriakides (2006) because it has good psy-
chometric and developmental properties. This battery involved the fol-
lowing tasks.

1.2.2.1. Analogical reasoning. Five verbal analogies and three Raven-like
matrices of increasing complexity addressed analogical reasoning. Com-
plexity was specified in reference to the familiarity, the abstractness,
and the order of the relations involved. Specifically, there were three
analogies of the a : b :: c: d type, where the thinker was asked to specify
the d component. Some of them were concrete and familiar (i.e., ink :
pen :: paint :: - [color, brush, paper]) and some of them were abstract
(i.e., picture : painting :: word : [paper, speech, literature]). The rest re-
quired the construction of third and fourth order relations {(tail : fish ::
feed :mammals) ::: - [movement, animals, vertebrates]} :::: {(propeller :
ship :: wheels : car) ::: - [vehicles, transportation, carriers]}. The
participant's taskwas to choose the correct word (shown here in italics)
among the three alternatives provided for each missing element.

Eleven Raven-like matrices of increasing complexity addressed fig-
ural analogical reasoning. Matrices varied in complexity according to
the number of the dimensions and transformations involved. Specifi-
cally, five matrices required to grasp the pattern organizing several fig-
ures varying along a single dimension (e.g., systematic change in size,
shape, size and shape). Six matrices required to grasp the relation be-
tween two ormore dimensions (e.g., size and shape); somematrices re-
quired to grasp the relation between transformations altering the
dimensions involved (one figure integrated into another while back-
ground shades changed according to a certain rule).

1.2.2.2. Deductive reasoning. Six class inclusion tasks and five syllogisms
addressed deductive reasoning. Difficulty of class inclusion tasks was
manipulated in reference to the relationships between the classes in-
volved. Syllogisms addressed logical relations of increasing complexity
(i.e., modus ponens, transitivity, modus tollens, negation, disjunction).

1.2.2.3. Visuospatial reasoning. Three sets of tasks addressed visuospatial
reasoning: Paper folding examined manipulation of rather familiar
mental images (3 items). Mental rotation was examined by matching
objects rotated to various degrees (4 items). A rotating clock where
the two hands would come over each other at various degrees so that
pictures on them would merge examined integration of mental images
and rotation (3 items). Difficulty was manipulated in reference to the
number of dimensions involved and the complexity of rotation.

1.2.2.4. Scientific reasoning. To address scientific reasoning, isolation of
variables and hypothesis testing were examined. For isolation of vari-
ables, combinations between at least two levels of two variables
(plant and light) were given (i.e., someone planted beans at a sunny
place and wide beans at a sunny place) and participants were asked to
specifywhich variable is tested (4 items). For hypothesis testing, partic-
ipantswere asked to choose one of several alternative experiments best
testing a specific hypothesis (3 items).

Each item was scored on a fail (0) – pass (1) basis. The battery was
also very reliable (Cronbach's alpha was .76, .79, and .83 for the three
testing waves, respectively).

Analogies addressed to familiar relations, simple patterns varying
along a single dimension, mental rotations along a specific dimension,
and simple modus ponens and disjunction arguments are solved by
early rule-based reasoning. Explicitly constructing relations and map-
ping then on other relations, identifying interchanging patterns, and
mental rotation along two coordinated dimensions require late rule-
based reasoning. Finally, verbal analogies and Raven-like matrices
based on third-order relations between multiply varying dimensions
also require principle-based reasoning. Also the processes addressed
by the scientific reasoning tasks are attained in the cycle of principle-
based abilities, because they require coordination of general principles,
such as a hypothesis and experimentation by isolation of variables.

1.2.3. Processing efficiency tasks
A series of Stroop-like tasks measured speed and attention control

under three symbol systems, namely, verbal, numeric, and figural. Spe-
cifically, there were 36 stimuli for each symbol system, 18 congruent
stimuli addressed to speed and 18 stimuli incongruent addressed to at-
tention control.

For verbal speed of processing, participants read a number of words
denoting a colorwritten in the same ink-color (e.g., theword “red”writ-
ten in red). For verbal control, participants recognized the ink-color of
color words denoting another color (e.g., the word “red” written in
blue ink). Both tasks employed the following three color names,
which, in Greek, have the same number of letters: κόκκινο (red),
πράσινο (green), κίτρινο (yellow).

To measure speed and attention control in the number domain, sev-
eral “large” number digits, whichwere composed of “small” digits, were
prepared. This task involved the numbers 4, 7, and 9. In the compatible
condition, the large digit (e.g., 7) was composed of the same “small”
digit (i.e., 7). In the incompatible condition, the large digit (e.g., 7) was
composed of one of the other digits (e.g., 4). To measure speed, partici-
pants recognized the large number digits of congruent digits. To mea-
sure attention control, participants recognized the component digit of
incongruent digits.

Tomeasure speed and attention control in the visual domain, several
geometrical figures were composed like the number digits above. That
is, large geometrical figures (circles, triangles, and squares) were
made up of the same (congruent) or a different (incongruent) figure.
Tomeasure speed in this domain, participants recognized the large geo-
metrical figure of congruent conditions; to measure attention control,
the recognized the small figure of incongruent conditions.
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Reaction times in ms were used. Reliability was again very high
(Cronbach's alpha was .88, .92, and .88 for the three testing waves,
respectively).

1.2.4. Short-term and working memory
Both short-term and working memory were examined. Two

computer-administered tasks addressed short-term storage. The verbal
and the numerical tasks addressed forwardword span and 2-digit num-
ber span, respectively. Therewere six levels (2–7 units)with two sets in
each level in each system. To test working memory, participants were
required to recall from 2 to 7 words following execution of numerical
operations to check if simple expressions were right or wrong
(e.g., (4 ÷ 2) + 1 = 3)). Each set of words appeared when the partici-
pant pressed a key to indicate that she completed her evaluation of
the mathematical expression presented. To control for the effect of
mathematical facility on working memory, following the task above,
children were then asked to mentally execute numerical operations
on 1-digit numbers and type their answers. The task addressed to visuo-
spatial storage required to recall the geometrical figures included in sets
of figures (e.g., a circle, a triangle, and a square). Set size varied from 2 to
7 figures. Presentation time for each set was proportional to number of
figures involved (2 s/figure). The set to be memorized was presented
and was removed at the specified time. Then four sets were presented
simultaneously and arranged side by side. Participants were asked to
choose the one of the four sets fully matching the target set.

Scores indicated the upper level attained on each test. The
reliability of these tasks was below optimum, especially at first
testing (Cronbach's alpha was .32, 69, and .59 for the three testing
waves, respectively). This was caused by random variation of
performance on the visuospatial task. Dropping this task resulted
in a very large increase of reliability across all three testing waves
(Cronbach's alpha was .75, 86, and .83 for the three testing waves,
respectively). Thus, the visuospatial task was not used in the
analyses to be presented below.

1.3. The intervention program

Our training program aimed to enable students to identify the
various dimensions underlying the various mathematical reasoning
tasks described above, explicitly conceive of their various groupings,
and build the problem solving skills associated with each. Specifi-
cally, students were taught to look for and abstract properties and
relations, based on similarities and differences between tasks and
task types, align them according to a specific goal, conceptualize
problems, and build problem specific problem solving strategies.
Students were instructed to identify different problem types based
on their mathematical and inferential requirements, explicitly
represent each structure, and specify similarities and differences
between problem types. Thus, they were required to explicitly
metarepresent both problem structures and processes as well as
their associations. The emphasis was on formative concepts like
“attributes”, “relations”, “similarity”, “dissimilarity or difference”
and their instantiation in the various problem types.

The intervention comprised twelve 40-min lessons, organized in
three phases. The first phase involved the first three lessons. These
lessons aimed to enable children to recognize the conceptual and
procedural similarities of the various training problems presented.
In this phase children were guided to search for and identify relevant
attributes or relationships involved in a problem and explicitly
represent them into conceptual maps of similarities and differences
between tasks (see the problems included in the battery addressed
to mathematics—mathematical reasoning tasks; for instance,
children were instructed to specify the relation underlying various
patterns of numbers and separate patterns into those ruled by the
same relation and those differing). The second phase involved six
lessons. Each of the six lessons focused on a different type of
problems (e.g., increase, decrease, relations between whole num-
bers, relations between fractions) and instructed children how to
solve them (e.g., first specify the relation between the two numbers
of a fraction and then specify the relations between fractions) and
practice on other problems. Children were guided to construct pro-
cedural diagrams explicitly representing the sequence of steps in-
volved in the solution of a problem. Finally, the last phase involved
three lessons. These lessons focused on the encoding of relations
into rules (e.g., fractions are relations where the number below the
line denotes how an entity is divided and the number above the
line denotes how many parts of those specified by the other number
are taken), the specification of relations between rules (e.g., all frac-
tions can be reduced into a number specifying how an entity is di-
vided), the transfer of problem solving strategies to new problems,
the combination of strategies in complex problems requiring more
than one strategy, the evaluation of solutions, and their explicit
metarepresentation. In sake of metarepresentation, in this phase,
students were also required to recall strategies from memory ac-
cording to problem prompts standing for different problem types
and explicitly describe solution processes in detail and explicate
why each is appropriate for each problem type. The general scheme
guiding actions in phases 2 and 3 involved three steps: (i) search,
specify, and classify problem; (ii) compare problemwith other prob-
lems; (iii) solve problem choosing the best strategy available. Feed-
back was provided to children about the appropriateness of their
answers.

The content of problems was taken from the mathematics curricu-
lum of 5th and 6th grades. For example, activities involved concepts re-
lated to the factorization and the divisibility of natural numbers,
algebraic expressions and generalizations about the properties of num-
bers and numbers' operations (e.g., odd + odd= even, the sum of two
consecutive triangular numbers), numerical proportions, number se-
quences (e.g., Fibonacci number sequence, the sequence of triangular
numbers, etc.), and attributes and properties of two-dimensional and
three-dimensional figures (e.g., different kinds of parallelograms, prop-
erties of parallelograms, analogy tasks with figures, etc.) and geometri-
cal patterns.

In terms of the ReConcePmodel outlined in the introduction, this in-
struction program focused on establishing and consolidating processes
primarily pertinent to the rule-based cycle. In concern to the other cog-
nitive domains tested in this study, instructionwas related to analogical
reasoning in addition to mathematics which was its primary aim. The
other domains addressed by the batteries above were only minimally
and indirectly related.

1.3.1. Sessions
All testing took place at schools during regular school hours. There

was a separate session for each of the three batteries above, each lasting
for about 1 h. Examination followed regular school brakes.

Each of the 12 intervention lessons lasted for 40 min, which is the
regular duration of a school period. The 12 lessons spread over nine
weeks. Specifically, one or two lessons were weekly delivered until
the program was completed. Slight variations in the rate of delivering
the lessonswas necessary to tune the intervention programwith every-
day school activities. Obviously, this intervention might be shorter or
longer than the 12 sessions delivered here. According to our design,
this number of sessions was enough to meet the targets of instruction
as presented above. Moreover, it was decided that the density of ses-
sions was appropriate to sustain the necessary continuity across ses-
sions, given the constraints of the school program.

Pretest sessions took place in the last semester of fifth grade. The in-
tervention took place at the first semester of sixth grade. Posttest ses-
sions took place at the second semester of sixth grade.

The interventionwas delivered to each class by only one person, the
first author of this paper, who is a secondary school mathematics
teacher.
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2. Results

Four approacheswere adopted to specify the nature of change across
the three testingwaves, the possible effects of instruction, and the inter-
action between processes. First, a series of Rasch analyses were applied
on the performance attained on the mathematical reasoning battery
and the cognitive battery. These analyses aimed to construct systematic
ability dimensions that would reflect the developmental/difficulty
structure of the batteries. Thesewould then be used to specify the effect
of intervention on the underlying constructs represented. Three sets of
Rasch analyses were run. The first set was applied on the performance
attained on the mathematical reasoning battery at each testing wave.
The scales abstracted showed that items requiring to identify an explic-
itly present rule (e.g., numbers double) reside at the lower end of the
scale; items requiring to identify multiply varying patterns, match rela-
tions vis-à-vis a general principle and explicitly state a principle reside
at the higher end of the scale. The second analysis was applied on all
of the items included in the cognitive battery. Items requiring simple
mental rotations of familiar objects (e.g., paper folding along the diago-
nal, simple modus ponens or disjunction syllogisms, and verbal analo-
gies involving familiar objects (e.g., Nicosia is for Cyprus what London
is for Britain) scaled at the lower end of this scale; mental rotations
along multiple dimensions, higher order analogies, negation syllogisms
and all scientific reasoning items requiring scaled at the higher end of
this scale. Obviously, this scale is a powerful index of Gf as it stands for
a wide variety of cognitive processes. The third analysis was applied
only on the six verbal analogies and the 11 Raven-like matrices. This
scale, narrower as it is than the scale standing for performance on all
cognitive tasks, allows differentiating relational inferential processes
per se from other domain-specific skills, such as experimental ormental
rotation. Taken together, these two scales would allow capturing possi-
ble differences in transfer between relational thought as such and its
implementation to domains possibly requiring additional processes.
All scales were very reliable as indicated by their high item (all N.6)
and person reliability indices (all N.9).

Second, the scores of each participant on each of the Rasch scales
abovewere subjected to various ANOVAs used to specify the general ef-
fects of training on the various factors of interest.

Third, growthmodelingwas used to precisely specify andmodel the
patterns of change across abilities. Finally, structured means analysis
was used to pinpoint the exact magnitude of change across abilities
and specify their structural relations.

2.1. Capturing instruction effects

A series of analyses were applied on the logit scores attained by each
participant on each of the three Rasch scales described above. Specifi-
cally, the first ANOVA compared the two experimental groups on the
mathematical logit scores across the three testing waves. The main ef-
fect of experimental group was non-significant, F(1114) = 1.06,
p N .05, η = .01. However, the main effect of testing wave, F(2113) =
24.28, p b .001, η = .30 and the experimental group x testing wave in-
teraction, F(2114)=9.31, p b .001, η= .14, were significant. The trends
uncovered by this analysis are shown in Fig. 1A (the corresponding raw
mean scores are shown in Supplementary Table 1). It can be seen that
performance improved across testing waves in both the control (1.51,
1.80, 1.53, for the three testingwaves, respectively) and the experimen-
tal group (1.29, 2.59, 1.79, for the three testing waves, respectively).
Pairwise comparisons indicated that the difference between the first
and the second testing and between the second and the third testing
were significant, (Wilk's lambda = .70, p b .001). Univariate compari-
sons showed that the two groups did not differ at pretest, F(1114) =
1.417, p N .05, η = .01; however, the experimental group significantly
outperformed the control group at immediate pretest, F(1114) =
6.81, p b .01, η = .06, but not at delayed posttest, F(1114) = .63,
p N .05, η = .01. Within groups comparisons for differences between
testing sessions showed that, in the experimental group, performance
at first, (57) = 8.68, p b .001, and second pretest, t(57) = 3.90,
p b .001, was significantly higher than performance at pretest. Perfor-
mance at second posttest was significantly lower that performance at
first posttest, t(57) = 3.68, p b .001. In the control group only the first
of these three differences reached significance, t = 2.12 (57), p b .04.
These results suggest that instruction was effective to improve mathe-
matical reasoning but this effect weakened with time.

To test the possibility of transfer to non-trained processes, a second
ANOVA compared the two groups on the logit scores estimated on the
basis of performance on all of the tasks included in the cognitive battery.
The main effect of experimental group was not significant, F(1114) =
.06, p N .05, η = .00. However, both the main effect of testing wave, F
(2113) = 9.58, p b .001, η = .14, and the testing wave x experimental
group interaction were significant, F(1113) = 3.84, p b .03, η = .06.
The effects reflected the fact that performance improved across testing
in both the control (.81, .90, and .87) and the experimental group (.64,
1.02, and .82). Pairwise comparisons indicated that the difference be-
tween thefirst and the secondand thefirst and the third testingwas sig-
nificant, (Wilk's lambda= .86, p b .001). Univariate comparisons of the
two groups indicated that their difference at the first, F(1114) = 1.60,
p N .05, η = .01, the second, F(1114) = .42, p N .05, η = .01, and the
third testing, F(1114) = .08, p N .05, η = .00, was not significant. The
within groups comparisons for differences between testing sessions
showed that, in the experimental group, performance at first pretest
was better than performance at pretest, t(57) = 4.93, p b .001; perfor-
mance at the second posttestwas onlymarginally better than at pretest,
t(57) = 1.72, p b .09; performance at the second posttest was lower
than at the first pretest, t = 2.11 (57), p b .04. None of these differences
approached significance in the control group. Therefore, it seems that
the experience of taking the cognitive test did influence all participants
positively; instruction provided only a slight but not stable advantage to
the trained participants (see Fig. 1B and Supplementary Table 1).

Onemight object that it may be toomuch to expect training transfer
to an index of so disparate abilities including processes totally unrelated
to the training provided here (i.e., spatial and scientific reasoning). To
examine this possibility, a third ANOVA compared the two groups on
the logit scores standing for performance on analogical reasoning (ver-
bal analogies and Raven-like matrices). The results here were very dif-
ferent from the results presented so far. Specifically, the main effects
of experimental group F(1114) = 7.77, p b .006, η = .06, and testing
wave were highly significant, F(2113) = 19.19, p b .001, η = .25, as
well as their interaction, F(1114) = 12.33, p b .001, η = .18. These re-
sults indicated that performance of both the control (1.26, 1.38, and
1.25 at the three testing waves, respectively) and the experimental
group (1.22, 2.36, and 1.79 at the three testing waves, respectively) im-
proved across testing. Pairwise comparisons suggested that the differ-
ence between the first and the second and the first and the third
testing was significant (Wilk's lambda= .75, p b .001). Univariate com-
parisons showed that the two groups did not differ at pretest, F
(1114) = .046, N .05, η = .00. However, the experimental group signif-
icantly outperformed the control group at both the second, F(1114) =
27.86, p b .001, η = .15, and the third testing, F(1114) = 5.26, p b .02,
η= .04. Pairwisewithin groups comparisons for possible session differ-
ences showed that, in the experimental group, performance at first, t =
7.27 (57), p b .001, and second posttest, t = 3.36 (57), p b .001, signifi-
cantly exceeded performance at pretest; performance at the second
posttest was lower than at the first posttest, t = 3.58 (57), p b .001.
None of these differences was significant in the control group. It is
clear, therefore, that there was strong transfer of training to relational
inferential reasoningwhichwas sustained over time, despite a tendency
to weaken (see Fig. 1C and Supplementary Table 1).

To explore the possible effects of training on working memory and
processing efficiency three ANOVAs were run. The first was a 2 (exper-
imental groups)× 3 (meanworkingmemory performance on thework-
ing memory, the word, and the digit span tasks at the three testing



Fig. 1.Mean logit scores as a function of intervention, process, and testing wave.
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waves) ANOVA with repeated measures on the last factor. The main ef-
fect of groupwas significant, F(1114)= 13.73, p b .001, η= .11. The ef-
fect ofwave, F(2113)=124.85, p b .001,η=.69was very powerful. The
wave × experimental group, F(1114) = 3.93, p b .03, η = .06 was also
significant. Individual comparisons between the experimental groups
revealed no significant difference at first testing, F(1114) = 1.68,
p N .05, η= .02, but significant differences in favor of the experimental
group at both the second, F(1114) = 18.98, p b .001, η = .14, and the
third testing, F(1114) = 10.05, p b .002, η = .08. The pairwise within
groups comparisons for possible session differences showed that, in
the experimental group, performance at first, t = 8.46 (57), p b .001,
and secondposttest, t=10.63 (57), p b .001, significantly exceeded per-
formance at pretest; also, performance at the second posttest was
higher than at the first posttest, t = 1.99 (57), p b .05. However, all of
these differences, although smallerwere also significant and in same di-
rection in the control group, (t = 5.64, 8.16, and 3.57, p b .001 in all
cases, respectively). Obviously, training did positively influence work-
ing memory, although the testing experience was also influential (see
Fig. 1D and Supplementary Table 2).

To explore possible effects on speed and attention control two anal-
yses were run. The first included mean performance on the compatible
tasks at each testing wave. Only the wave effect was significant, F
(1113)=30.40, p N .001,η= .35, indicating systematic decrease of pro-
cessing speed across the three waves in both groups (mean RT was
1263 ms, 1109 ms, and 1072 ms at the three waves, respectively). The
second analysis was applied on mean performance attained on the in-
compatible tasks. In this analysis, the wave x experimental group inter-
action was significant, F(1113) = 3.74, p N .03, η = .06, in addition to
the main effect of testing wave, F(1113) = 28.46, p N .001, η = .34.
These effects suggested that the experimental group improved more
(1467 ms, 1193 ms, and 1191 ms for the three waves, respectively)
than the control group (1357 ms, 1230 ms, and 1225 ms for the three
waves, respectively) across testing waves. It is noted, however, that
none of the between-group comparisons within waves ever reached
significance. The pairwise within groups comparisons for possible ses-
sion differences showed that, in the experimental group, performance
at first, t = 6.61 (57), p b .001, and second posttest, t = 2.77 (57),
p b .008, significantly exceeded performance at pretest; performance
at the second posttest did not differ from the first posttest, t = .06
(57), p N .05, indicating a leveling off. Similar but weaker trends were
observed in the control group, (t = 3.66, p b .001, 2.63, p b .01, and
.12, p N .05, for the three comparisons, respectively). Therefore, there
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seems to be a weak trend for training to positively affect attention con-
trol but not pure speed (see Supplementary Table 3).

One might ask how the training effect above may relate to general
intelligence rather than separate processes. To answer this question,
factor scores were obtained for the first principal component of each
testingwave that resulted from a factor analysis applied on the basic di-
mensions tested at each testing wave (mathematics, analogical, Raven-
like, syllogistic reasoning and class inclusion, isolation of variables and
hypothesis testing, mental rotation, speed and attention control, and
short-term andworkingmemory). These factor scores may be regarded
asmeasures of g at each testingwave. These scoreswere subjected to a 2
(the two groups) × 3 (the three testing waves) ANOVA. Themain effect
of group was marginally significant, F(1113) = 3.24, p b .07, η = .03.
The main effect of testing wave was nonsignificant, F(2112) = .001,
p N .05, η = .00. However, the group × testing wave interaction was
highly significant, F(2112) = 23.06, p b .001, η = .29. These results
reflected the lack of difference between the two groups at first testing
(.06 vs. −.06 for control and experimental group, respectively, F
(1114)= .48, p N .05, η= .00), their large difference favoring the exper-
imental group atfirst posttest (−.36 vs. .37 for control and experimental
group, respectively, F(1114) = 16.68, p b .001, η= .13), and a margin-
ally significant superiority of the experimental group at the second post-
test (−.15 vs. .15 for control and experimental group, respectively, F
(1114) = 2.61, p b .10, η= .02). Therefore, our intervention did some-
how change “true g”, to the extent these scores reflect this construct.

2.2. Growth and generalization

The analyses above suggested clearly that the patterns of change
across testing waves differed between domains. Growth modeling is
themethod of choice formapping growth patternswhen there aremul-
tiple testing waves. Moreover, growth modeling is more appropriate
than other methods to reveal possible differences in the form of change
caused by intervention in different process. In sake of this aim several
growth models were separately applied on the scores attained by chil-
dren in the control and the experimental group in each of the five cog-
nitive domains: mathematical reasoning (i.e., number series, number
analogies, and explicit grasp of principles underlying mathematical
analogies), logical reasoning (i.e., deductive and class reasoning), ana-
logical reasoning (i.e., verbal analogies and Raven-likematrices), spatial
reasoning (i.e., mental rotation and image integration), and causal-
scientific reasoning (i.e., isolation of variables and hypothesis testing).
To ensure comparability across domains mean scores on each of these
domains were transformed into z scores. Control and working memory
were also included, after being transformed into z scores (speedwas not
used here because its strong covariation with attention control might
cause collinearity problems to model estimation). Specifically, the
mean z score for each of these processes was related to the intercept re-
lated to all processes to capture the possible influence of these processes
on growth patterns. All modelswere tested in a 2-group set up to exam-
ine possible differences in the form of growth between the control and
the experimental group that might be ascribed to intervention. The cor-
relations between the variables used in these models are presented in
Supplementary Tables 1–6.

The first model assumed complete similarity between the two
groups. This model assumed linear growth across testing occasions
and across domains. Specifically, in this model, there was one intercept
factor set to 1 for all three testing waves across the five domains; there
was also one slope factor set to 1, 2, and 3 for each testing wave, respec-
tively, across the five domains. The fit of this model was poor, χ2

(270) = 633.15, p b .001, CFI = .65, RMSEA = .12, model AIC =
93.15, suggesting that the assumption of linear growth across domains
and groups was not tenable. The second model assumed that there
was no growth in the control group and linear growth, as above, in
the experimental group. Technically, the only difference between this
and the first model was the dropping of the slope factor in the control
group. The fit of this model, although slightly better than the first
model, was also poor, χ2 (271) = 624.81, p b .001, CFI = .67,
RMSEA = .12, model AIC = 80.81. These two models suggest strongly
that change is much more complicated than any simple model that
would assume no change in the control group and linear change in
the experimental group.

A more realistic model would assume some change in the control
group, to reflect the influence of testing experience and a variable pat-
tern of change in the experimental group to reflect the differential im-
pact of training on the domain trained and the other domains,
according to their similarity to the trained domain. A first approach in
implementing this model would be to assume, first, that there is sys-
tematic change in the control group in mathematics, to reflect the fact
thatmathematics is an object of educationwhere there is learning inde-
pendent of the experiment. Second, change in the other domains in the
control group would be limited, most expressed at third testing, to re-
flect the influence of repeated testing. To implement these assumptions
in themodel, the intercept factor of all measureswas set to 1 in the con-
trol group. The slopewas set to 1, 2, and 3 for the three testingwaves in
mathematics and to 0, 0, and 1 for the three waves in all other domains.
Third, in the experimental group, there should be systematic change in
the domain of mathematics to reflect both the effect of teaching at
school and our training and also a relative drop of performance from
first to second posttest, to reflect a wane out effect that is common in
learning experiments. Fourth, there should also be change in the deduc-
tive and analogical reasoning in the experimental group to reflect gen-
eralization to inferential processes related to training. Finally, there
should be limited change in scientific and spatial reasoning to reflect,
in the fashion specified in the second model in concern to the control
group, the effects of repeated testing. To implement this model, the in-
tercept was set to 1 for all measures as above. The slope for mathemat-
ics, deductive, and analogical reasoning was set to 1, 2, and 3, for the
three testingwaves, respectively; the slope for scientific and spatial rea-
soning was set to 0, 0, and 1, for the three testing waves, respectively.
The fit of this model, although still not acceptable, was better than any
of the models above, χ2 (266) = 566.06, p b .001, CFI = .72,
RMSEA = .11, model AIC = 34.06, indicating that change is a multifac-
eted process; its different faces reflect variations in learning experiences
and differences in cognitive domains.

To precisely capture the various faces of change, a dampening factor
was introduced, in addition to the intercept and the slope factor. In
growthmodeling, dampening factors are introduced to represent possi-
ble changes in the slope factor at different testing intervals. In the pres-
ent model, this factor was equal to the slope factor for waves 1 and 2,
respectively. However, the value for the third wave was the relation be-
tween thedifference of thefirst from the third and thefirst from the sec-
ond wave. Therefore, this factor aimed to capture the relative drop of
performance from the second to the third wave (see Bentler, 2006;
Stoolmiller, 1995). In the control group, a dampening factor was as-
sumed only for mathematics. In the experimental group a dampening
factor was assumed for mathematics, analogical, and spatial reasoning.
The error terms of the first testing across all domains were constrained
to be equal across groups, assuming that measurements behaved the
same in the two groups before intervention. The fit of this model was
good, χ2 (264) = 447.40, p b .001, CFI = .99, RMSEA = .08, model
AIC = −80.60.

It is noted that the correlation between the intercept and slope was
high and positive in the control group (.93); in the experimental group
it was lower and negative (−.42). This indicated that, under conditions
of spontaneous development, initial higher ability was associated with
higher gain at later measures. Under conditions of guided development
as attempted in the experimental group, initially lower performing chil-
dren gained more from instruction. Interestingly, the relation between
intercept and the dampening factor was positive and significant in the
control group (.48) but negative and significant in the experimental
group (−.59), indicating that the higher the gain caused by intervention
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the higher the drop at a later testing time. The various parameters and
relations generated by thismodel are shown in Table 1. It is clear, there-
fore, that (i) growth is different between the control and the training
group; (ii) it is stronger in the trained ability than others; (iii) it gener-
alizes to procedurally similar abilities; (iv) it relatively weakens at de-
layed posttest. The models to be presented below will further specify
these trends and explore the relations between processes.

2.3. Developmental and functional interactions

Structured means analysis is complementary to growth modeling. It
enables one to specify the possible interactions between abilities, in ad-
dition to specifying the possible effects of learning. In addition, it en-
ables one to specify the possible transfer of effects from specific to
general abilities. Three models were tested. These models explored
the effects of training from (i) pretest to the immediate posttest, (ii)
pretest to the delayed posttest, and (iii) the immediate to the delayed
posttest, respectively. The first model included the following scores:
two mean scores for speed and two mean scores for control of process-
ing, respectively, to stand for each of these two dimensions of process-
ing efficiency at pretest; two mean scores to stand for verbal and
numerical working memory at pretest, respectively; five scores, one
for each thought domain, to stand for performance in the five thought
domains at pretest; these three sets of scores were regressed on three
separate factors, for speed or control, working memory, and Gf, respec-
tively. There were also three sets of standardized gain scores (i.e., the
difference between a later and an earlier testing in each of the scores
above dividedby the SD of the later score), to stand for change frompre-
test to immediate posttest and from immediate to delayed posttest in
each of the eight dimensions above. These scoreswere regressed on fac-
tors corresponding to the factors above. Thus, these factors represent
change from the one testing to the next in each of the various abilities.
It is noted that speed and control were not used simultaneously in the
same model. The one or the other was included in the model involving
all other factors. This manipulation was considered necessary to specify
the role of each of these two dimensions of processing efficiency,
Table 1
Growth model for change across abilities and the three testing waves.

Control group

Ability Inter Slope Damp T1 T2 T3

Functions 1.92* .00 .16*
.04 .02 .05

Maths .02 −.42 −
.93 .95 .8

Deductive .07 .06 .0
.94 1.05 1.

Analogical .02 −.35 −
.93 .97 1.

Scientific .02 −.07 −
1.02 1.01 .9

Spatial .12 −.018 .0
.98 1.12 .8

Control 1.36 -.17 .06 .0
.83 1.04 1.

WM 1.92 .00 −.15 −
.31 .48 .4

Inter var .04*
.02

Slope var .02*
.01

Damp var .13*
.03

Inter R .93* .48
Slope R −.27

Note 1: z scores (and SD below each z score) used for modeling at Times 1, 2, and 3. Raw score
tween the variables used in these models are presented in Supplementary Tables 4-6.
without causing co-linearity effects which unnecessarily burden
model estimation. For space considerations, here we only present re-
sults from the models involving control. Finally, the error variances of
the same measures across testing waves were allowed to correlate to
control for possible systematicity in error variation across testing
waves. The correlations between the variables used in these models
are presented in Supplementary Tables 4–6. Means and standard devia-
tions are presented in Supplementary Tables 1–3.

To specify structural relations, the working memory factor was
regressed on the processing efficiency factor and the Gf factor was
regressed on both of these factors. Also, each change factor was
regressed on its corresponding performance factor. The efficiency
change factor was also regressed on the working memory change fac-
tor; the working memory change factor was also regressed on the Gf
change factor. Finally, all ability-specific factors were regressed on the
performance intercept. The factor loadings and the variable-intercept
relations were constrained to be equal between the control and the ex-
perimental group. The change intercept for all three change factors was
set to 0 in the control group and it was left free to be estimated in the
experimental group. In the second model all ability scores were the
same as above. However, the change scores represented change from
pretest to the delayed posttest. In the thirdmodel, the ability scores rep-
resented performance at the immediate posttest and the change scores
represented change from the immediate to the delayed posttest. These
change intercepts can be interpreted as effect sizes in Cohen's d terms.
The structural relations in these models were the same as above (differ-
ences in df across models are due to the fact that correlations between
error variances were dropped when non-significant). The fit of all
three models was good (see fit indexes in Table 2). The main findings
of these analyses are summarized in Table 2. They are as follows.

In concern to change, frompretest to immediate posttest, therewere
significant differences between the control and the experimental group
in all domains but scientific reasoning. This was reflected in the fact that
the difference between the two groups in Gf (.38) was also significant.
Notably, the difference between the control and the experimental
group in attention control (−.10) and working memory was also
Experimental group

Inter Slope Damp T1 T2 T3

1.55* .04+ .32*
.08 .03 .03

.21 −.07 .39 .20
8 1.05 .88 1.08
5 −.11 −.07 −.07
03 1.05 .96 .99
.13 −.03 .31 .10
01 1.08 .92 .99
.03 −.05 .02 .00
3 .99 .98 1.06
1 −.12 .18 −.04
6 1.04 .81 1.13
5 1.46 .20 −.07 −.06
23 1.12 .96 .72
.08 4.16 −.01 .14 .07
0 .47 .45 .58

.26*

.08

.03*

.01

.01

.01
−.42 −.59

−.90

s and standard deviations are presented in Supplementary Tables 1-3. The correlations be-



Table 2
Structural relations between change in WM, Gf, and the various domains as a function of training, time, and process.

Ability Control group Experimental group

Contr WM Gf Gf ch Contr WM Gf WM ch Gf ch Intercept

T1➔T2: χ2 (238) = 290.39, p = .01, CFI = 1.0, RMSEA = .06
WM −.28* −.12 −.03
Gf – .26* – – .18* −.12
Change
Control −.39* – −.72* −.10*
WM – −.83* – – – .67* – – .72* .93*
Gf – .77* – .10 −.61* .38*

Maths .38*
Deduct .12*
Analog .20*
Scient .06
Spatial .08*

T1➔T3:, χ2 (237) = 323.27, p = .01, CFI = .94, RMSEA = .08
WM −.27 −.28* .09*
Gf −.37 .20 – .31* −.19

Change
Control −.23 −.41* – – −.10 −.11*
WM −.89* .40 – −.99* .36* .60*
Gf – 1.00 .30* −.42* .20*

Maths .20*
Deduct .13*
Analog .05
Scient .10
Spatial .01

T2➔T3: χ2 (234) = 317.39, p = .01, CFI = .99, RMSEA = .08
WM −.05 −.16 1.24*
Gf – .49* – .36* .52*

Change
Control −.25 .28 −.58* .20 – .02
WM −.65* .44* −.57* .40* .33* −.01
Gf −1.0 – .27 −.36* −.11

Maths −.11
Deduct .09*
Analog −.08
Scient .06
Spatial −.03

Note 1: Intercept for control group was set to 0.
Note 2: The correlations between the variables used in these models are presented in Supplementary Tables 1–6.
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significant (.93). In the secondmodel capturing relations frompretest to
the delayed posttest two effects dropped below significance: analogical
(.05) and spatial thought (.01). The effect onmathematics (.20), deduc-
tive reasoning (.20), Gf (.20), and attention control (−.11), and WM
(.60) were still significant. In the third model all effects were negative
but one (deductive reasoning) indicating performance drop. The drop
was significant only in analogical (−.08) and spatial thought (−.03). In-
terestingly, the difference in deductive reasoning (.09) indicated that
the experimental group continued to rise. This is in line with the fact
that in this model there was still a significant difference between the
control and the experimental group in working memory (1.24) and Gf
(.52).

How much change can an intervention bring about? Interestingly,
this study suggested strongly that there was a developmental limit to
how much change can occur. This was the upper level of ability associ-
ated with a particular developmental level. The closer an individual was
to this level the less this individual gained from instruction directed to
the attainment of this level. Thus, the limitmarker of changewas the in-
dividual accomplishment before the intervention. The higher the ac-
complishment the less the room left for change as a result of the
intervention. Thiswas suggested by the systematic but negative relation
between Gf at a prior testing and change in Gf, in the experimental
group (−.61, −.42, and −.36 in the three models, respectively).
How is change in various abilities mediated by other abilities? The
answer to this question lies in the relations between change in each
ability and change or prior state of others. Change in working memory
was strongly mediated by change in Gf (.72, .36, and .33 in the three
models in the experimental group, respectively). Change in Gf was me-
diated by the prior state of working memory (.10, .30, and .27, in the
three models in the experimental group, respectively), although these
relations were weaker. It is notable that change in Gf or in working
memory was not related to change in control.

3. Discussion

In the introduction sectionwe asked if learning to use general cogni-
tive processes in a specific domain (i) augments fluid intelligence, (ii)
transfers to domain-free representational and processing capacities,
(iii) varies over time, and (iv) is constrained by developmental level.
The answer is “yes” to all of these questions. Specifically, this study
showed an interesting combination of changes associated with our in-
tervention: Change in the domain of mathematical reasoning, which
was the focus of intervention, was considerable at the immediate
post-test but it was not sustainable in time. However, in line with find-
ings presented by other researchers, the gains did transfer to domain-
free analogical reasoning tasks and they proved sustainable
(e.g., Klauer & Phye, 2008). Also, structured means analysis showed
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that these gains did generalize to other domains, such as deductive and
spatial reasoning, that differ from the processes trained. Interestingly,
gains in deductive reasoning continued to improve from second to
third testing, when they dropped in other domains. Naturally, these
gainswere clearly expressed at the level of the latent construct standing
for Gf.

Special attention is drawn to the transfer of effects to domain general
processes reflecting processing and representational efficiency. This
finding runs contrary to the first prediction derived from psychometric
(Jensen, 1998; te Nijenhuis et al., 2007; te Nijenhuis et al., 2014) and
neo-Piagetian developmental theory (Case, 1985; Pascual-Leone,
1970), which assume that the direction of causality runs from process-
ing efficiency to reasoning. The transfer of effects to all PREM factors,
working memory in particular, suggests that learning did go through
from domain-geared inferential processes down to domain free indexes
of g. It is stressed that the magnitude of change in working memory
caused by change in Gf (52%, 13%, and 11% of variance of workingmem-
ory change accounted for by Gf change in the three models presented
above) was much larger than the magnitude of change in Gf accounted
for by change in working memory (1%, 9%, and 7%, respectively). In
agreement with the third prediction, these effects suggest that learning
to reason tightened the whole system up, modifying indexes of g in the
way spontaneous development does. These findings are, to our knowl-
edge, novel in this field and align with the predictions of the ReConceP
model. Notably, this model presumes that at the end of the rule-based
concepts cycle the Gf-working memory relations are much stronger
than theGf-speed relations, and thatwhen rule-based concepts are con-
solidated at the end of this cycle, speed improves, opening transition to
the next cycle of principle-based concepts (Demetriou et al., 2013;
Demetriou, Spanoudis & Shayer, 2014; Demetriou, Spanoudis, Shayer,
van der Ven, Brydges, Kroesbergen, Podjarny & Swanson, 2014). This
is precisely what the present intervention generated.

At the same time, the impact of the program, however respect-
able it appears if expressed in these terms, was not enough tomodify
thought processes that belong to a next cycle of development,
namely the principle-based cycle. This was suggested by the fact
that scientific reasoning remained impervious to learning experi-
ences provided here. We would ascribe this finding to the fact that
the aspects of scientific reasoning examined here (hypothesis for-
mation and testing) belong to the principle-based cycle. The results
discussed above about the impact of learning on PREM indexes of g
suggest that the transition processes to this cycle might have been
activated but the impact was not large enough to be expressed into
actual cycle-specific reasoning patterns. This pattern of effects, in
both its positive and its negative side, bears an important educa-
tional implication. Learning programs must cycle along the cycles
of development themselves. That is, they must be tailored to succes-
sive developmental cycles through the end, each time boosting the
processes that relate to the emergence and consolidation of each
cycle. Affecting an earlier cycle would not necessarily transfer to
the next cycle, even if it raises its level of readiness. This may render
observed gains developmentally-specific to a large extent, suggest-
ing that intelligence and related cognitive processes are constrained
by powerful developmental cycles that set strong limits to learning.
Thus, instruction-based change in various aspects of these processes
may be temporary, as shown here. Sustainability and transfer of cog-
nitive change to another cycle may also be constrained by brain-
dependent developmental dynamics that may be more powerful
than instruction based learning (Wendelken, Ferrer, Whitaker, &
Bunge, 2015).

This interpretation may explain the distressing fade out effect of in-
telligence research, suggesting that interventions aiming to boost intel-
ligence wane out in 2–3 years after the end of intervention. This
interpretation expands rather than contradicts Protzko's (2015) inter-
pretation that sustainability of learning gains require that the environ-
ment is continuously as demanding as the intervention environment.
It suggests that in addition to the need to be continuously available, en-
vironmental demands must adapt to changing developmental needs
until gains are locked into the system as habitual ways of dealing with
problems. In fact, the results of the various growth models presented
here suggest that the size and forms of transfer of gains from an inter-
vention vary as a function of proximity between the process trained
and the other processes. Therefore, interventions that may be relevant
to the real life of education or clinical practice must accommodate the
variable terrain of cognitive processes.

Onemight object here that these differenceswere caused by random
variation in each of the two groups rather than the intervention ad-
dressed to the experimental group. Redic (2015) showed recently that
training effects in studies aiming to raise cognitive processes such as
working memory may be caused by a relative drop of performance in
the control group rather than true change in the experimental group.
This is clearly not the case here. We showed above that change in the
control group, if any, was in the direction of increase rather than de-
crease. Moreover, the present study involved a rather large sample in
both groups and comparisons were effected on the level of latent con-
structs built on multiple measures rather than on a few observed mea-
sures. Thus, the change observed here was genuine.

There is a message here for researchers looking for the holy grail of
learning and intelligence boosting in a particular process, however cen-
tral it might be, such as training executive control or working memory:
However useful and effective these training programs may be
(e.g., Barnett, 2011; Diamond, 2013), they should expand to include
other processes as well, such as awareness of mental processes and
how they connect to a particular problem domains (Christoforides
et al., in press) if they would have a permanent and adulthood-
important effect (e.g., Greiff et al., 2014). In fact, the present study
showed that the influence going from relational thought to working
memory was much stronger than the other way around. At the same
time, even if targeting powerful inferential processes as attempted
here, the results of learning may often be shaky and unstable. This
may reflect, on the one hand, the fact that sustainability of gains re-
quires sustainability of support for high level intellectual functioning.
On the other hand, it may indicate that learning gains are
developmentally-specific. That is, they may change a process at the
level targeted, but they do not fully consolidate and automate unless
they are embedded in the supportive frame of operating at a next higher
level developmental cycle. The present study showed clearly that trans-
fer to processes specific to the next cycle, such as scientific thinking, was
not attained by our intervention. One might assume that the learning
gains in the domain-trained might be more stable if interventions
would also target these higher level abilities than the abilities of a par-
ticular level. Finally, this study also showed that the fade out effect
may be more apparent than real if it co-exists with gains in other do-
mains of functioning. That is, interventions may have beneficial effects
discernible in other domains, even if themeasures of the trained dimen-
sion eventually settles down to levels not very different from those
taken before these interventions. Obviously, this study would have to
be validated with training addressed to other processes, other develop-
mental cycles, and longer durations that would ensure greater transfer
and permanence of gains. Moreover, we would need to use methods
of diagnosing andmodeling gains that would be sensitive enough to lo-
cate them and precisely map them.
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